Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Circ Res ; 130(10): 1510-1530, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1794328

ABSTRACT

BACKGROUND: Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS: We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS: In addition to macrophages, we found a high proportion of αß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αß T cells (CD4

Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , T-Lymphocytes , Antigens , Clone Cells/immunology , Coronary Artery Disease/immunology , Endothelial Cells , Epitopes , HLA-DR alpha-Chains , Humans , Lymphocyte Activation , Plaque, Atherosclerotic/immunology , T-Lymphocytes/immunology
2.
Mol Med ; 27(1): 129, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1477255

ABSTRACT

BACKGROUND: Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threatening disease. Tools are needed for early risk assessment. METHODS: We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. Classification and regression tree (CART) models were used to identify prognostic biomarkers. RESULTS: Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 [0.6233-0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547-0.9201]). CXCL10 concentration abated in COVID-19 survivors after healing and discharge from the hospital. CONCLUSIONS: CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the most robust predictive biomarker of patient outcome in COVID-19.


Subject(s)
COVID-19/diagnosis , Chemokine CXCL10/blood , Coronary Artery Disease/diagnosis , Diabetes Mellitus/diagnosis , Hypertension/diagnosis , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/immunology , COVID-19/mortality , Comorbidity , Coronary Artery Disease/blood , Coronary Artery Disease/immunology , Coronary Artery Disease/mortality , Creatine/blood , Diabetes Mellitus/blood , Diabetes Mellitus/immunology , Diabetes Mellitus/mortality , Female , Hospitalization , Humans , Hypertension/blood , Hypertension/immunology , Hypertension/mortality , Immunity, Humoral , Immunity, Innate , Inflammation , Intensive Care Units , L-Lactate Dehydrogenase/blood , Leukocyte Count , Lymphocytes/immunology , Lymphocytes/pathology , Male , Middle Aged , Neutrophils/immunology , Neutrophils/pathology , Prognosis , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
3.
Cardiovasc Res ; 117(1): 224-239, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1387842

ABSTRACT

AIMS: To elucidate the prognostic role of monocytes in the immune response of patients with coronary artery disease (CAD) at risk for life-threatening heart and lung injury as major complications of SARS-CoV-2 infection. METHODS AND RESULTS: From February to April 2020, we prospectively studied a cohort of 96 participants comprising 47 consecutive patients with CAD and acute SARS-CoV-2 infection (CAD + SARS-CoV-2), 19 CAD patients without infections, and 30 healthy controls. Clinical assessment included blood sampling, echocardiography, and electrocardiography within 12 h of admission. Respiratory failure was stratified by the Horovitz Index (HI) as moderately/severely impaired when HI ≤200 mmHg. The clinical endpoint (EP) was defined as HI ≤200 mmHg with subsequent mechanical ventilation within a follow-up of 30 days. The numbers of CD14dimCD16+ non-classical monocytes in peripheral blood were remarkably low in CAD + SARS-CoV-2 compared with CAD patients without infection and healthy controls (P < 0.0001). Moreover, these CD14dimCD16 monocytes showed decreased expression of established markers of adhesion, migration, and T-cell activation (CD54, CD62L, CX3CR1, CD80, and HLA-DR). Decreased numbers of CD14dimCD16+ monocytes were associated with the occurrence of EP. Kaplan-Meier curves illustrate that CAD + SARS-CoV-2 patients with numbers below the median of CD14dimCD16+ monocytes (median 1443 cells/mL) reached EP significantly more often compared to patients with numbers above the median (log-rank 5.03, P = 0.025). CONCLUSION: Decreased numbers of CD14dimCD16+ monocytes are associated with rapidly progressive respiratory failure in CAD + SARS-CoV-2 patients. Intensified risk assessments comprising monocyte sub- and phenotypes may help to identify patients at risk for respiratory failure.


Subject(s)
COVID-19/complications , Coronary Artery Disease/complications , Lipopolysaccharide Receptors/analysis , Monocytes/physiology , Receptors, IgG/analysis , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/immunology , Coronary Artery Disease/immunology , Female , GPI-Linked Proteins/analysis , Humans , Immunohistochemistry , Male , Middle Aged , Monocytes/immunology , Phenotype , Retrospective Studies
4.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: covidwho-1256664

ABSTRACT

Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Cardiomyopathies/immunology , Coronary Artery Disease/immunology , Venous Thromboembolism/immunology , COVID-19/complications , COVID-19/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Cytokines/genetics , Datasets as Topic , Humans , Immunocompromised Host/genetics , Inflammasomes/genetics , Lymphocyte Count , Patient Acuity , RNA-Seq , Venous Thromboembolism/complications
5.
FEBS J ; 288(6): 1771-1777, 2021 03.
Article in English | MEDLINE | ID: covidwho-702279

ABSTRACT

Kawasaki syndrome (KS) is an acute vasculitis in children complicated by the development of heart disease. Despite its description over 50 years ago, the etiology of coronary artery disease in KS is unknown. High dose intravenous immunoglobulin is the most effective approach to reduce cardiovascular complications. It remains unclear why patients with KS develop coronary artery aneurysms. A subset of patients is resistant to immunoglobulin therapy. Given the heterogeneity of clinical features, variability of history, and therapeutic response, KS may be a cluster of phenotypes triggered by multiple infectious agents and influenced by various environmental, genetic, and immunologic responses. The cause of KS is unknown, and a diagnostic test remains lacking. A better understanding of mechanisms leading to acute KS would contribute to a more precision medicine approach for this complex disease. In the current viewpoint, we make the case for microbial superantigens as important causes of KS.


Subject(s)
Bacterial Toxins/immunology , Coronary Artery Disease/immunology , Enterotoxins/immunology , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Superantigens/immunology , Child , Coronary Artery Disease/complications , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mucocutaneous Lymph Node Syndrome/complications , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL